
Interactive Paper Marbling

NICK WALKER

CS354 Fall 2016

1 Introduction

Marbling is a traditional art practice in which acrylic
inks are floated on a liquid surface, then transferred
to a sheet of paper. The resulting patterns can re-
semble marble, but common outputs range from in-
tricate spiraling patters to spattered, space-like de-
signs.

Several works have modeled marbling as a Navier-
Stokes fluid simulation, however, this is computa-
tionally demanding and dissipative. The resulting
images are chronically blurry and fail to capture the
well defined boundaries between colored areas that
are characteristic of marbled patterns. In contrast,
a paper from Lu et. al. describes a closed form ap-
proximate solution for the position of vertices along
the boundaries of ink drops under various marbling
operations [1].

In the Lu work, compositions are completely described
by a sequence of marbling operations. We provide
the equations that define the deformations created
by each operation, describe how these operations
can be rendered, and present our interactive imple-
mentation.

2 Operations

Each marbling operation defines a force field over
the marbling surface. That is, each operation F ac-
cepts an coordinate on the marbling surface and re-
turns a displacement vector.

F : R2 → R2

Operations may have parameters that control their
placement of effect. We will notate these additional
parameters as variables upon which the operation
is conditioned. For example, here is the translation
operation T , given real scalar parameter s, which

translates all points up along the y-axis by s.

p =

[
x
y

]

T (p|s) =

[
0
s

]

2.1 Ink Drop

The ink drop operation places a colored circle of ra-
dius r at point c. It deforms other points according
to the field

r ∈ R+

O(p|c, r) = −p+

(
c− (p− c)

√
1 +

r2

‖p− c‖2

)

which has the property of preserving the area of sur-
rounding ink drops.

In addition to the field it applies, ink drop is the only
operation that adds geometry to the simulation. The
points it creates are subject to deformation by sub-
sequent operations.

2.2 Tine Line

The line line operation simulates dragging a pointed
instrument through the marbling surface. Its princi-
ple parameters are c, a point on the line that will
be combed through, and d, the direction in which
to comb. The strength of the force field is inversely
proportional to the distance between p and cb. Pa-
rameters α and λ control the magnitude and sharp-
ness of the displacement falloff.

α, λ ∈ R+

L(p|c,d,α, λ) =
αλ

d+ λ
d̂

d = ‖(p− c)>ĉ‖

1

2.3 Wavy Comb

The wavy comb operator simulates moving a comb
of tines through the marbling surface in a sinusoidal
pattern. θ controls the angle of the x-axis on which
the curve sits,ω controls the wavelength andA con-
trols the amplitude.

W (p|θ,A,ω) = f

(
p>
[

sin(θ)
−cos(θ)

])[
cos(θ)
sin(θ)

]
f(v) = Asin(ωv)

2.4 Tine Circle

The tine circle operator simulates moving a tine in a
circle with radius r and center c.

O(p|c, r) = −p+

(
c− (p− c)>

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

])
l =

αλ

d+ λ

θ =
l

‖p− c‖
d = |‖p− c‖− r|

2.5 Vortex

The vortex operation simulates a tine moving in cir-
cles towards a point. It is identical to the tine cir-
cle operator except that the distance term no longer
falls off with the radius.

d = ‖p− c‖

3 Rendering

A sequence of operations fully describes a marbling
composition. In order to render the composition, we
evaluate each operation in sequence, transforming
all existing points according to the operation dis-
placement field, then creating new geometry (in the
case of the ink drop operator). Drops are modeled
by polygons that have a fixed density d of points per
unit arc-length, with d typically set such that many
points fall within a single pixel. The resulting paths
are rasterized by drawing the them in the order in
which they were deposited.

4 Implementation

We implemented the marbling simulation in Typescript–
a language which compiles to Javascript–and lever-

Algorithm 1 Render

1: Input: list of operations O, r geometry resolu-
tion

2: Output: bitmap image
3: procedure RENDER(O, r)
4: drops← []
5: for o in O do
6: for drop in drops do
7: for p in drop.points do
8: p← p+o.displacementAtPoint(p)
9: end for

10: end for
11: if o instance of InkDropOperation then
12: drops.append o.createGeometry(r))
13: end if
14: end for
15: image← baseColor
16: for drop in drops do
17: image← draw drop on top
18: end for
19: end procedure

Figure 1: The interface of our application. A color
panel on the bottom left provides several sets of pre-
defined colors. The tool pane on the right provides
access to the various operations.

aged the capable Canvas 2D graphics API. 1 While
the operations work on all modern browsers, we
have only tested our UI on the latest versions of
Google Chrome.

Our tool lets users

• apply ink marbling operations with dynamic
control over parameters

• preview displacement fields interactively

• view operation results almost instantly

• save compositions as PNG images

1All source code for our application is available at
github.com/nickswalker/paper-marbling-js

2

Figure 2: The cursor for the line tine operation as the
user drags out the direction vector. The scroll wheel
allows the user to control the number and spacing
of the tines.

Figure 3: The displacement field preview as a user
drags out the radius of a circular tine operation.

• script all operations using Javascript with an
in-application script editor

4.1 Interactive controls

Users can control operations by clicking and drag-
ging. Most operations accept the c parameter as their
origin. We map this parameter to mouse-down coor-
dinates on our canvas. Operations that require a di-
rection allow the user to drag while the left mouse-
button is held to create a direction vector. The length
of this vector is mapped to strength related param-
eters of the tool. Some parameters, which the user
may wish to set and persist across multiple appli-
cations of the operation, are mapped to the scroll
wheel, and shift-scrolling sometimes controls a sec-
ondary parameter. We designed a flexible cursor ren-
dering system which lets users see how their adjust-
ments and movements are affecting the tool.

Figure 4: The script editor open above our applica-
tion’s main interaface. User’s have access to all of
the capabilities of the Javascript standard library as
well as access to the marbling operation API.

A full preview of the displacement field that would
be applied with the current tool parameterization
can also be rendered by pressing F.

4.2 Script Editor

Taking advantage of Javascript’s dynamic nature,
we provide the same object-oriented operation API
built for our use to users. Scripts can be shared as
URLs, enabling easy sharing of precise compositions.
The editor’s syntax highlighting is provided by the
popular open source CodeMirror library.

4.3 Limitations

Although the rendering approach we used allows
for arbitrary precision, it has expense proportional
to ink-drop point density. As more drops are added,
the rendering process slows significantly, and the
user will notice a delay between releasing the mouse
and seeing the results of their operation. A raster
rendering approach, in which operations are applied
to pixels and not points along ink-drop boundaries
would enable GPU acceleration and frame rates suf-
ficient to provide intra-operation animation.

Because of the single threaded nature of Javascript
virtual machines, long rendering times impact UI
responsiveness. Support for background threads is
becoming more widespread, however it brings ad-
ditional implementation complexity.

A fundamental limitation of this marbling approach
is its simplicity. As opposed to more sophisticated
fluid simulation approaches, it cannot reproduce highly
dynamic behavior seen in some types of marbling.

3

Figure 5: A pattern created with a script that placed
concentric circles, then ran circular tines emanating
from the left and right of the canvas.

Figure 6: A mix of randomly placed drops and vor-
tices.

Figure 7: Alternating horizontal and vertical tines
create familiar floral patterns

5 Conclusion and Future Work

The provided tools enable a range of traditional mar-
bling patterns, but they cannot easily express freeform
tine patterns. Future work should explore enabling
freehand operations. Lu and collaborators have re-
cently published work extending the 2D marbling
operations to 3D. An extension of this project may
attempt to implement this work.

References

[1] Shufang Lu, A. Jaffer, Xiaogang Jin, Hanli
Zhao, and Xiaoyang Mao. Mathematical mar-
bling. IEEE Computer Graphics and Applications,
32(6):26–35, 2012.

4

